A note on geodesics in the Hayward metric

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on convergence in fuzzy metric spaces

The sequential $p$-convergence in a fuzzy metric space, in the sense of George and Veeramani, was introduced by D. Mihet as a weaker concept than convergence. Here we introduce a stronger concept called $s$-convergence, and we characterize those fuzzy metric spaces in which convergent sequences are $s$-convergent. In such a case $M$ is called an $s$-fuzzy metric. If $(N_M,ast)$ is a fuzzy metri...

متن کامل

Geodesics in Asymmetric Metric Spaces

In a recent paper [16] we studied asymmetric metric spaces; in this context we studied the length of paths, introduced the class of runcontinuous paths; we noted that there are different definitions of “length space” (also known as “path-metric space” or “intrinsic space”). In this paper we continue the analysis of asymmetric metric spaces. We propose possible definitions of completeness and (l...

متن کامل

A Note on Geodesics in Infinite-dimensional Teichm Uller Spaces

In this paper the following phenomena of geodesics in an innnite-dimensional Teichm uller space are founded: a geodesic (locally shortest arc) need not be a straight line (an isometric embedding of a segment of R into the Teichm uller space), no sphere is convex with respect to straight lines, and some geodesics can intersect themselves.

متن کامل

a note on convergence in fuzzy metric spaces

the sequential $p$-convergence in a fuzzy metric space, in the sense of george and veeramani, was introduced by d. mihet as a weaker concept than convergence. here we introduce a stronger concept called $s$-convergence, and we characterize those fuzzy metric spaces in which convergent sequences are $s$-convergent. in such a case $m$ is called an $s$-fuzzy metric. if $(n_m,ast)$ is a fuzzy metri...

متن کامل

A Note on Carnot Geodesics in Nilpotent Lie Groups

We show that strictly abnormal geodesics arise in graded nilpotent Lie groups. We construct such a group, for which some Carnot geodesics are strictly abnormal and, in fact, not normal in any subgroup. In the 2-step case we also prove that these geodesics are always smooth. Our main technique is based on the equations for the normal and abnormal curves, that we derive (for any Lie group) explic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Progress of Theoretical and Experimental Physics

سال: 2017

ISSN: 2050-3911

DOI: 10.1093/ptep/ptx037